A Fortran Coding Convention for
Use in the U.S. Geological Survey,
Water Resources Division

By Kathleen M. Flynn, John L. Kittle, Jr., and Alan M. Lumb

U.S. GEOLOGICAL SURVEY
Open-File Report 94-501

Reston, Virginia
1994

U.S. DEPARTMENT OF THE INTERIOR
BRUCE BABBITT, Secretary
U.S. GEOLOGICAL SURVEY

Gordon P. Eaton, Director

The use of trade, product, industry, or firm names is for descriptive purposes only and does not imply
endorsement by the U.S. Government.

For additional information write to: Copies of this report can be purchased from:
Chief, Hydrologic Analysis Support Section U.S. Geological Survey

U.S. Geological Survey, WRD Earth Science Information Center

415 National Center Open-File Reports Section

Reston, VA 22092 Box 25286, MS 517

Denver Federal Center
Denver, CO 80225

CONTENTS

ADSEFACEeeeieeterieeie ettt ettt s st sa e r s st e he bR s e e ettt s h et s et st e b e e ae sh e b e nb et e saesaeae b sreeatens 1
Introduction and BacKGIOUNA..........c..ccviuiiieiimiiiieiieeiii ettt e s stes s e sa e a e s se s e b ebesbe st saesaneae 1
Fortran Requirements, Restrictions, and EXtensIONScccccouveiniirnieciiinincnere ittt 3
Structured Programming TECHNIQUES.........cccccvveertierieieiie ettt sttt sttt s s tt st b ne e e 13
Specifications, Documentation, and StYIE ..o s 14
SEIECLEA RETEIEICEScovvinieireeeiieicteceee ettt e bbbt er et a b ee e st et st e s seater e seaatsteseenesbens 25
Appendix A. SYStem DOCumentation (SYSDOC) PrOgraml.........ceeveueirereiirererieseeseseeceeseseissesesseesesessaene 27
FIGURES

1. Fortran Subrouting QULHINEcc.ciiiiiniiiiieecte ettt et st et et st r e s b saenreeaas 15
2. PARAMETER INCLUDE File QUEHDNE.......cccoveuiiiciiiiciiriineneiniee ettt seenes e s 19
3. COMMON Block INCLUDE File OULHNEccccivrvertrtiirinienerecneeseeeteeseeseseseatse s sese st st e sessestesasseseans 21
4. Definition INCLUDE File QULHNEccoooviiiiiriiiiie ittt sttt st ettt st n e 21
A.1. Example Input Files sysdoc.opt and teSt1.inD......c..cceuvuiveeirieicriiieinieiiee sttt sttt seen e 30
A.2. Example Report of Documented ROULINES..........ooeriuiiiririreiricieetncrcseet ettt s s svee e enaes 31
A.3. Example Report of Common Block USage.........coeuiiiiiiiiiiiiicsnrcenecciee e s 57
A.4. Example Report of INtringic USAZEccoviririiiiiiiiiiiiciece i s 59
A.5. Example Report of UnKnown ROULINESc.cccvciiiieieioniieiiriiceeiiieeeeeecres s retsseseestn s tseaessenencsenns 64
TABLES

1. Fortran Constructs to be Avoided and Suggested Alternatives for These Constructsceceeeevereeecceveeennnnn 3
2. Fortran Language Extensions that are Recommended............c.cocovinnicninnennninccn et 3
3. Character Strings Used to Identify Key Elements in the Documentation.............cccceeeeeeenrerierenencrnnnenesrennanes 14
A.1. Description of the SYSDOC Processing Options and the Optional Input File sysdoc.opt........cccccccceveennenee. 27
A.2. Input, Intermediate, and Output Files for SYSDOCccoooiiiiiiriririineeeee et seesie v e aeee e eeaenns 28
A.3. Format of the Required Input File [Prefix].inp ...t 29

CONTENTS

A Fortran Coding Convention for Use in the
U.S. Geological Survey, Water Resources Division

By Kathleen M. Flynn', John L. Kittle, Jr.2, and Alan M. Lumb'
Abstract

A coding convention for computer programs written in Fortran has been established by the
Water Resources Division of the U.S. Geological Survey. This convention covers both the imple-
mentation of selected Fortran features and a recommended coding style. It is designed to simplify
the tasks associated with software support, maintenance, and distribution and is an important
element in software quality assurance plans.

The SYStem DOCumentation (SYSDOC) program is also described in this report. The
SYSDOC program can be used to produce detailed documentation for any program that follows
this coding convention. SYSDOC produces text files that summarize PROGRAMs,
SUBROUTINEs, FUNCTIONSs, and COMMON blocks and documents all links between them.

INTRODUCTION AND BACKGROUND

As computing power expands and diversifies, the issues related to software development, maintenance,
distribution, and support become more complex. Originally, the majority of the computing done by the
U.S. Geological Survey, Water Resources Division (WRD), was done on mainframe computers, the first
located in Washington, D.C., and the second at its headquarters in Reston, Va. In the early 1980’s, much of
the computing was moved to a network of minicomputers distributed around the country in district and
region offices as well as the headquarters offices in Reston. Today, in addition to the mainframe and mini-
computers, there is a large assortment of microcomputers and workstations. In the future, the numbers and
assortments of microcomputers and workstations will increase. WRD has gone from maintaining and sup-
porting a single copy of a program on the mainframe to distributing, maintaining, and supporting as many
as 100 or more copies of a given program for an array of platforms.

With the expanding computing power, the libraries of programs have grown. Many of the programs are
large and complex. Programming is often a team effort, with the programmers frequently located in different
states. Often the people involved in the original programming are not available to help with support and
maintenance.

A coding convention is particularly needed with a distributed programming, support, and maintenance
staff, and a distributed computing system. With a well-defined coding convention, software is easier to read,
understand, debug, maintain, distribute, and support than with no coding convention. Software documenta-
tion can be computer generated from code that conforms to a fixed convention. Computer-generated docu-
mentation can save a substantial amount of time and will be more accurate and up to date than handwritten
documentation.

The convention described in this document is intended to simplify the tasks of documenting and sup-
porting software written in Fortran. It should also be helpful in porting software to different types of
machines. Unlike some of the newer programming languages, Fortran does not force structured program-
ming (Berns, 1984). This convention encourages structured programming. Some Fortran features that may

' U.S. Geological Survey
2 Consultant

INTRODUCTION AND BACKGROUND 1

be obsolete or are identified as poor programming practice are discouraged. This convention has not been
found to limit the capabilities of Fortran.

Programs that have been written to conform to this convention can be documented using the SYStem
DOCumentation (SYSDOC) program. Use of the program is documented in Appendix A. An example of
the program documentation generated by SYSDOC is found in Appendix A.

This convention, in combination with SYSDOC and a Fortran static analyzer, provides a sound basis
for software quality control. A static analyzer is a software tool that is used to identify problems and errors
in code that are often overlooked by a compiler. Static analyzers include, but are not limited to, the Main-
tainability Analysis Tool (MAT) (Berns, 1985), FTNCHEK (Moniot, 1993), FORCHECK (Leiden Univer-
sity of the Netherlands), FOR-STUDY (Cobalt Blue, Inc., 1993), FOR-STRUCT (Cobalt Blue, Inc., 1992),
and plusFORT (Polyhedron Software Limited, 1986-94).

This coding convention has evolved over a number of years beginning with a convention developed for
the U.S. Environmental Protection Agency’s Hydrological Simulation Program—FORTRAN (Johanson
and Kittle, 1983). Several groups, including other Federal agencies, have been using versions of the con-
vention. The final version described here represents a compromise of styles. The main goal has been to pro-
duce code that is consistent, well documented without being excessively verbose, readable, and easy to
maintain and support. Experience has shown that implementing this convention takes little or no additional
time during software development and can save a lot of time in software maintenance, debugging, support,
and porting.

In the discussions that follow, the Fortran use and coding style described in this document will be
referred to as the convention and the Fortran standards will be referred to as the standard. The Fortran
standard that is associated with this convention is the American National Standards Institute (ANSI)
X3.9-1978 FORTRAN standard. Extensions to the standard have been highlighted in the text by a

ind-

2 A Fortran Coding Convention for Use in the U.S. Geological Survey, Water Resources Division

FORTRAN REQUIREMENTS, RESTRICTIONS, AND EXTENSIONS

This section describes requirements for and restrictions placed on the use of the ANSI X3.9 - 1978
FORTRAN standard. It also describes recommended extensions to the standard. In addition to the require-
ments and restrictions and excluding the extensions described in this report, all coding should comply with
the standard.

All programmers should have a Fortran language reference manual. The reference manual should be
written for the compiler being used and should clearly identify extensions to the standard. Another impor-
tant tool for the programmer is a structured programming textbook. See the references for some possibilities.

The following section describes the Fortran constructs that are part of this convention. These include
recommended constructs, as well as identifying those that should be avoided. In general, coding constructs
that should be avoided are those that promote unstructured programming techniques, are not part of the stan-
dard, or are obsolete or little used constructs that may yield different results on different computer platforms.
Any software features that contain device dependent code, such as operating system dependent input/output
operations, should be isolated in separate routines. Table 1 contains a list of Fortran constructs that should
be avoided and recommended alternatives to their use. Table 2 contains a list of recommended extensions
to the standard. Note that some compilers may not accept all of the language extensions. These features, as
well as recommended features, are described in more detail on the following pages.

Table 1. Fortran constructs to be avoided and suggested alternatives
for these constructs

Fortran feature Alternative

alternate RETURN IF construct

arithmetic IF IF construct

ASSIGN structured programming techniques
assigned GO TO structured programming techniques
BACKSPACE internal write and read

blank COMMON labeled COMMON

BLOCK DATA subroutine that initializes common variables
computed GO TO IF construct

DO noninteger control use integer control variables
DIMENSION statement explicit type declaration

ENTRY multiple routines or option flags
EQUIVALENCE

Hollerith quoted characters

PAUSE READ statement that waits for input
RETURN (multiple) condition flags

STOP (multiple) condition flags

tabs spaces

* #, and /* comments
\,&,!, <> " and _

comments beginning with C in column 1
another character

Table 2. Fortran language extensions that are recommended

Fortran extension

Use

INCLUDE
lowercase

PARAMETERs, COMMON:Ss, and file names
local variable names

Rules are not made to be broken. However, there are exceptions to rules. This coding convention has
been developed over time and is based on experiences with porting to different hardware platforms and
compilers, as well as experiences with program maintenance and support. The rationale behind each con-
vention is explained below.

FORTRAN REQUIREMENTS, RESTRICTIONS, AND EXTENSIONS 3

At the start of any programming project, these conventions should be reviewed. Any additional require-
ments, restrictions, or extensions should be clearly identified, described, and justified. Any modifications
or amendments to this convention also should be identified, described, and justified.

Alternate RETURN

Arithmetic IF

ASSIGN and
assigned GO TO

BACKSPACE

Blank COMMON

BLOCK DATA

Alternate RETURNS should not be used.

An alternate RETURN introduces labels into an argument list to allow the called
procedure to direct the execution of the caller upon return. The same effect can
be achieved with a return code that is tested in an IF construct on RETURN. This
avoids an irregularity in the syntax and semantics of argument association.

The arithmetic IF should be avoided.

The multiple branching nature of this statement violates the principles of struc-
tured top-down programming and makes the code more difficult to understand
and maintain. A preferred alternative is an IF statement or an IF construct.

The ASSIGN statement and the assigned GO TO should not be used.

The multiple branching nature of these statements violates the principles of struc-
tured top-down programming and makes the code more difficult to understand
and maintain. A preferred alternative is an IF statement or an IF construct.

The ASSIGN statement allows a label to be dynamically assigned to an integer
variable and the assigned GO TO statement allows "indirect branching" through
this variable. This hinders the readability of the program flow, especially if the
integer variable also is used in arithmetic operations. The two totally different
usages of the integer variable can be an obscure source of error. The statement
should be replaced by ordinary assignment and the computed GO TO.

BACKSPACE statements should be avoided.

An alternative is to save the record into a character buffer and then use internal
READs. Another option is to write the sequential file to a temporary direct access
file, though this second option should be used sparingly due to portability issues
(see the section Direct Access files).

BACKSPACE can make the logic of the code difficult to follow, especially when
the READ and the BACKSPACE statements are in different parts of the code.
Many inconsistencies in compilers and systems occur in file operations.

Blank COMMON is not used.

Blank COMMON should never be used for libraries because there is no name
associated with it, and it is too easy for it to lose its identity.

BLOCK DATA is not used.
The preferred alternative is to set the data values in a subroutine.

BLOCK DATA should never be used in a library structure as no entry point is
generated; therefore, a loader has no way of bringing the initialized data into the
executable. Because developed code will often eventually be made into libraries,
this construct should not be used in general. The problem stems from the fact that
the BLOCK DATA name is optional; therefore, when the entry-point symbol
table is generated during compilation, its name is not carried through because it
is not required.

4 A Fortran Coding Convention for Use in the U.S. Geological Survey, Water Resources Division

Case

CASE

Character set

C language

Comments

All comment lines are identified by an uppercase C in column 1 (a lowercase ¢
is nonstandard). The text of the comment should be in mixed uppercase and
lowercase to improve code readability. FORMAT statements may contain mixed
uppercase and lowercase to meet output requirements and improve the readabil-
ity of the output. All other statements are in uppercase.

CASE constructs are not part of the standard and should not be used.
Use an IF statement or an IF construct.

The Fortran character set consists of the 26 uppercase letters A to Z, the ten digits
0 to 9, and the following special characters:

' apostrophe = equal sign

* asterisk (left parenthesis
blank - minus sign
colon + plussign

, comma) right parenthesis

$ currency sign / slash

decimal point

The following characters are not part of the standard and should be used only in
quoted character strings or comments:

& ampersand < less than

\ backslash ! quotation mark
! exclamation point tab

> greater than _ underscore

The backslash should be avoided as it is sometimes used by compilers as an
escape character. Tabs should also be avoided due to problems porting software
to various compilers and hardware platforms.

When moving between Fortran and C, remember that the languages handle
arrays in different ways. Fortran arrays are column major and C arrays are row
major. (Fortran arrays are stored in memory with the leftmost dimension varying
faster, C with the rightmost dimension varying faster.)

All comment lines are identified by an uppercase C in column 1. The text of the
comment is in mixed uppercase and lowercase to improve code readability and
is indented with the line of code immediately following the comment. Comment
lines with no text may be used to separate groups of code but generally should

not be used without an accompanying comment line containing text. If the logic
of the code is such that the programmer believes it should be spaced by a blank
comment, it probably needs a comment describing what the next block of code
is all about.

FORTRAN REQUIREMENTS, RESTRICTIONS, AND EXTENSIONS 5

COMMON

For consistency, an uppercase C in column 1 is used to signify a comment. An *
or #in column 1 or a /* on a statement line are not used. The *, #, and / are sym-
bols that have specific meaning to some text editors and may cause problems
when editing files containing these characters. The /* is not part of the Fortran
standard.

Comment lines are never inserted into the middle of a statement that is continued
on more than one line.

Comment lines are critical to making a program easy to understand. Use good
comments liberally. Make sure that comments and code agree; when the code
changes, comments also change.

All COMMON blocks are labeled. Blank COMMON is not used. Each variable
is explicitly declared by type. The dimensions of arrays are placed in the explicit
type declarations, not the COMMON block statement. Large arrays should be
dimensioned with a PARAMETER if the code is written to allow different sizes
for the arrays.

The standard places restrictions on the order of some data types and on mixing
numeric and character data in commons. CHARACTER variables are not con-
tained in the same COMMON block as numeric or logical variables. DOUBLE
PRECISION or COMPLEX variables are in separate COMMON blocks or are
listed first if included with other numeric variables. For clarity, it is preferred that
they be in separate COMMON blocks. Variables should be ordered from the
largest variable type to the smallest. The following is the recommended order:
QUAD PRECISION
DOUBLE PRECISION
COMPLEX
REAL
INTEGER
LOGICAL
L *1

A definition include file should follow the COMMON include file at least the
first time the COMMON is found in the code. The definitions will follow the
same format as argument definitions.

Comments telling which variables in the COMMON block are input, which are
modified, and which are output should be placed in the routine following the
COMMON block include file.

A Fortran Coding Convention for Use in the U.S. Geological Survey, Water Resources Division

Computed GO TO

Concatenation

Continuation lines

DATA statements

Data types

A computed GO TO may be used to implement the case structure but should
generally be avoided.

The multiple branching nature of this statement makes it easy to violate the prin-
ciples of structured top-down programming and may make the code more diffi-
cult to understand and maintain. A preferred alternative is an IF statement or an
IF construct.

Use standard library operators and functions such as "//", INDEX, CHAR, and
LEN for character concatenation. A library of subprograms is available from the
authors for the manipulation of CHARACTER*1 arrays. These subprograms
may be easier to use than concatenation of character variables.

Continuation lines use a consistent symbol in column 6. Any of the 26 letters, 13
special characters, or the digits 1-9, as described above under character set, may
be used. The standard does not allow the digit 0. Continuation characters for sub-
program arguments are I, M, and O as described under dummy arguments below.

Code on a continuation line is indented at least as far as the code on the previous
line. Lines of continued code are never interrupted by a comment. If a statement
is so complex that it needs commenting in the middie, it will be difficult to under-
stand and prone to error. It should be broken into smaller, more easily understood
statements.

The standard limits the number of continuation lines to 19 per statement. Contin-
uation is commonly found in type declarations, FORMAT, READ, WRITE,
PRINT, DATA, CALL, FUNCTION, and SUBROUTINE statements. An
attempt should be made to limit continuation in other executable statements to
four or five lines. Equations spanning a number of lines may become very diffi-
cult to read.

The recommended character is the $. The alpha-numeric and arithmetic opera-
tors are not recommended for continuation characters as they can be confused
with expressions and statement numbers, making the software harder to read and
understand.

Make sure all program variables are initialized prior to use. DATA statements
may be used to initialize SAVEd variables that are used as flags for initializing
other variables. DATA statements also may be used to set the values for constant
variables. Use executable statements to initialize all other variables.

The standard explicitly permits six types of data. Note that the only one of these
that allows for a length, or size, specification is the CHARACTER type. The use
of QUAD PRECISION, INTEGER*2, and LOGICAL*1 is discouraged. For
consistency, it is recommended that the same order be used for making type
declarations.

INTEGER

REAL

DOUBLE PRECISION

COMPLEX
LOGICAL

CHARACTER*n

FORTRAN REQUIREMENTS, RESTRICTIONS, AND EXTENSIONS 7

DIMENSION

Direct Access files

DO loops

DO WHILE,
DO UNTIL, and
DO END

Dummy arguments

ENTRY

EQUIVALENCE

FORMAT

The DIMENSION statement is not used.

All variables are declared explicitly by type. The dimensions of variables are
included in the explicit type statements only. The dimensions of variables are not
included in COMMON statements.

Direct access files should be used carefully. File opens are separate from the rest
of the code and well documented to facilitate maintenance and porting. A com-
ment explicitly describes the required record length.

Inconsistencies in compilers occur in the units used to define the record length of
unformatted direct access files. Depending on the compiler, or even the compile
options selected, record length units may be bytes, words, half words, or some
other unit. ‘

DO loops always end with a labeled CONTINUE. Multiple DO loops do not
share the same CONTINUE. Control never jumps into a DO loop. Jumping out
of a DO loop should be avoided. If control needs to jump out of a DO loop, then
use a GO TO structure described below.

REAL and DOUBLE PRECISION DO control variables and DO control expres-
sions are not used. Use INTEGER constants or variables.

DO WHILE, DO UNTIL, and DO END are not part of the standard and generally
should not be used. Use a GO TO structure described below to implement these
features.

SUBROUTINE dummy arguments are ordered and listed as Input, Modify, and
Output variables, each type beginning on a new continuation line, in the stated

order, with an I, M, or O, respectively, in column 6. All dummy arguments in a
FUNCTION are Input because FUNCTIONS return a single value. See FUNC-
TION below for more information.

The practice of using I, M, and O for continuation lines, both in the routines and
in the calling routines, has been extremely helpful in debugging, program main-
tenance, and sharing programs.

ENTRY points are not used. The alternatives include passing an option flag to
the routine or separating the routine into multiple routines.

Multiple entries (and the usually accompanying multiple returns) violate the
principles of structured top-down programming and make the code more difficult
to understand and maintain. A subprogram should be entered at the beginning
and exited at the end.

EQUIVALENCE statements should be avoided. The use of equivalenced vari-
ables often reduces program clarity, making maintenance more difficult.

FORMATS are grouped together in numerically ascending order, with the input
FORMATS preceding the output FORMATs. FORMATS are consistently num-
bered.

FORMATS are grouped together and consistently located so they are easy to find
and so the logic and structure of the code is easy to read. The ranges 1000 to 1999
or 8000 to 8999 are recommended for input FORMATS and the ranges 2000 to
2999 or 9000 to 9999 are recommended for output FORMATSs.

8 A Fortran Coding Convention for Use in the U.S. Geological Survey, Water Resources Division

Free format,
Fortran

Free format,
input/output

FUNCTION

GO TO

Grouping of
routines

IF constructs

IF with .EQ.
and .NE.

Free format of Fortran code is an extension of the standard that should not be
used. The format that should be used for Fortran is:

column content

1 comment

2-5 statement label

6 continuation

7-72 statement

73-80 blank or revision comment

Free format for input and output is recommended, as appropriate, for the appli-
cation.

All FUNCTION statements include an explicit type specification. FUNCTIONs
return a single value. FUNCTION arguments are input only. For clarity and
maintenance, FUNCTIONs do not modify or output dummy arguments and do
not use COMMON blocks.

GO TO in conjunction with an IF pointing back to a CONTINUE statement is
used to implement a structured DO WHILE or DO UNTIL. GO TO statements
should be avoided in all other cases.

An IF statement or an IF construct is used in place of a GO TO pointing down in
the code.

The use of GO TOs are strictly controlled in structured programming. They
should be used only to implement a structured construct, such as DO/WHILE,
DO/UNTIL, or CASE, which are not available in the standard or when the elim-
ination of the GO TO will obscure rather than clarify the meaning of the code.

Undisciplined use of the GO TO statement is, perhaps, the most common viola-
tion of structured programming principles.

See also the Computed GO TO section.

The logical grouping of a program, subroutines, and functions into files will be
dependent on a number of things. The type of routine grouping should be decided
on at the beginning of the project.

When routines are grouped for a library, they should be ordered by the calling
sequence. How the compiler pulls routines into a program should also be consid-
ered.

Large new systems being developed by a number of people will require stringent
version control and the ability to easily locate a particular routine. In this case, it
may be most efficient to store each routine in a separate file.

For other programs, it may be more convenient to group closely related routines
together in a single file.

Use IF constructs to implement branching.
In general, .EQ. and .NE. should not be used to compare floating point variables.
An alternative is to check for a very small absolute difference between the two

variables. Machine precision and round off in computations may make equiva-
lent variables different by a very small fraction.

FORTRAN REQUIREMENTS, RESTRICTIONS, AND EXTENSIONS 9

INCLUDE

Indentation

Input

Intrinsic functions

Line numbers

See also the sectior lame cc

Indentation is used to denote blocks of code. It is used with DO loops, IF con-
structs, GO TO implementing DO WHILE and DO UNTIL structures, and error
handling for OPEN, READ, WRITE, and error conditions. Code is generally
indented two to four spaces—be consistent. The beginning and ending points of
the block of code are not indented (DO, CONTINUE, GO TO, IF, ELSE IF,
ELSE, and END IF). Comments are indented with the code.

Make sure input does not violate the limits of the program (array dimensions,
value range of data types). Terminate input by end-of-file or end-of-record, not
by count. Perform validity checks on input and have recovery methods for
invalid input. Use free-form input whenever appropriate. Have defaults for input
data when appropriate. Input should be self-descriptive, using keywords to allow
easy coding and proofreading. Test data should be for the extreme requirements
of the code.

Intrinsic functions should be used when possible.

Nonstandard functions should be avoided. These nonstandard functions include
AND, OR, XOR, NOT, LS, RS, SHFT, LT, RT, LOC, RND, IRND, INTS,
INTL, and double precision and complex functions.

The use of line numbers in columns 73-80 is unnecessary.

The original purpose of the line numbers was to aid in sorting a dropped deck of
cards, which is no longer valid. Text editors can provide line numbers for editing
purposes when they are needed.

See the Statement labels section for a discussion on numbering statements.

10 A Fortran Coding Convention for Use in the U.S. Geological Survey, Water Resources Division

Name conventions
(file)

Name conventions
(symbolic)

PARAMETER

PAUSE

File names may be anything that is valid on the platform being used. A consistent
naming convention is important. Files that are used on more than one platform
should have the same name on all platforms to reduce confusion.

Some projects may need to develop a detailed naming convention for file names
to convey pertinent information to the user.

There are a few system-specific limitations on file names. Very few systems
permit blanks within a file name. The PC environment generally limits a file
name to eight characters followed by a period and a three-character suffix, with
some suffixes having special meaning to the system. Special characters such as
<, >, /, and \ should be avoided as they may have special meaning on some
systems.

All program, function, subroutine, and variable names should be as descriptive
as possible (mean something) within the limit of six characters. The standard
limits the length of a name to six characters, and those characters are the letters
A through Z and the digits O through 9. Function and variable names are explic-
itly defined by type. Although each name is explicitly defined, a first-letter, type
naming convention of I through N for INTEGER, D for DOUBLE PRECISION,
C or A for CHARACTER, and the remaining alphabet for REAL may enhance
readability. Descriptive names should always take precedence over a type
naming convention.

The standard defines a symbolic name as having from one to six letters or digits,
the first being a letter.

COMMON block variable names should be at least two characters in length.

PARAMETER statements should be used for important constants and symbolic
data, such as pi, logical unit numbers, and array dimensions. These statements
ensure that a constant is not inadvertently changed and enhance portability of the
code as they allow modification of device specific information in a single state-
ment. For example, if arrays are dimensioned using a PARAMETER value, then
the code could be easily made smaller in terms of memory requirements for use
on a small problem or when machine memory is limited.

PAUSE should be avoided.

Execution of a PAUSE statement requires operator or system-specific interven-
tion to resume execution. In most cases, the same functionality can be achieved
as effectively and in a more portable way with the use of an appropriate READ
statement that awaits some input data.

FORTRAN REQUIREMENTS, RESTRICTIONS, AND EXTENSIONS 11

RETURN

Statement labels
(numbers)

STOP

Structure

Tabs

Uppercase/
lowercase

There is a single RETURN in each subprogram. Multiple RETURNS are not
used.

Multiple RETURNS cause nonstructured code, make documentation and code
maintenance more difficult, and are not necessary. A subprogram should be
entered at the beginning and exited at the end.

Statement labels are used only on FORMAT and CONTINUE statements, never
on executable statements. Statement labels start in column 2 and increase as you
go down in the code. FORMAT statements are 1000 or greater. The numbers

1 to 999 are used for CONTINUE statements. Be consistent in numbering state-
ments.

Statement numbers that are not in numerically ascending order make code diffi-
cult to understand and maintain. One-digit statement labels in column 1 may be
difficult to find when reading code that includes comment lines.

One numbering method is to have CONTINUE statements begin at a base of 10
and be incremented by a value that is dependent on the current indentation level
(that is the number of open DO or IF blocks). The increment value of un-indented
code should be 100; therefore, the first un-indented label is 100 CONTINUE.
The label increment for code at indentation level 2 should be 50, for level 3 - 20,
for level 4 - 10, for level 5 and above - 1. For example, if the last label is 445 and
the indentation level is 3, the label will be 460 (the next higher multiple of 20).
Use of this labeling style may increase readability of the code. Fortran language
processing tools can be used to automate this process.

There is a single STOP, located at the end of the main program. Well-structured
code with IF constructs and flag variables does not need additional STOP state-
ments.

Multiple STOPs cause nonstructured code, make documentation and code main-
tenance more difficult, and are not necessary.

Routines have readable flow from top to bottom. The code follows structured
programming principles. PROGRAMSs, SUBROUTINEs, and FUNCTIONSs, and
code blocks in general, are entered at the beginning (top) and exited at the end
(bottom). ENTRY points are not used. There is a single STOP in a program,
located at the end of the main routine, immediately before the END statement.
SUBROUTINESs and FUNCTIONSs never contain a STOP and contain a single
RETURN, located immediately before the END statement.

See the section STRUCTURED PROGRAMMING TECHNIQUES.
Tabs are not used.
Tabs are not part of the standard. They make program porting more difficult.

See Case.

12 A Fortran Coding Convention for Use in the U.S. Geological Survey, Water Resources Division

STRUCTURED PROGRAMMING TECHNIQUES

All programmers should have a Fortran language reference manual. The reference manual should be
written for the compiler being used and should clearly identify all extensions to the standard. Another
important tool for the programmer is a structured programming textbook. Structured programming is based
on two premises (General Electric, 1986):

1. that programs must be designed and written in a manner that is understandable and maintainable;
and

2. that reliable software can be created by refining a problem (and its solution) into manageable
elements.

This coding convention has been developed over time. It is based on the experiences of many scientists
and programmers developing, maintaining, and supporting software for different hardware platforms using
varied Fortran compilers. This convention, when followed, is designed to structure code in recognizable
patterns with each block of code (control structure) having a single entry and a single exit, thereby support-
ing the functionality of top-down design. Structured programs are better than unstructured in three ways:
increased reliability, easier verification, and easier modification.

Recognizable patterns in the code greatly simplify software development and maintenance as the mean-
ing of the code is more easily ascertained and automatic tools can be used to aid in the development process.
Therefore, both manual and automatic validation of software is enabled.

Validation of unstructured code is complicated as each statement must be treated as a separate event.
That is, in order to understand the meaning of the code, a statement-by-statement examination must be made
(the programmer must simulate a computer). Also, automated procedures cannot be used and debugging
becomes very tedious and prone to errors.

Program readability is enhanced using this convention as program structure is developed in a predict-
able manner in recognizable blocks of code. Each block of code performs a unique operation with a single
entry and a single exit. The size of a single routine should be limited to one or two printed pages for the
program logic. Through this modularization of the code, individual subfunctions can be easily identified and
understood. ‘

This coding convention, in addition to defining recommended coding constructs, defines a coding style
(indentation, commenting conventions, and internal documentation, and so forth) designed to provide max-
imum clarity and readability. For example, indentation enhances clarity by showing the logical structure of
the code.

STRUCTURED PROGRAMMING TECHNIQUES 13

SPECIFICATIONS, DOCUMENTATION, AND STYLE

This section describes the parts of the convention related to specification statements, in-line documen-
tation, and overall style and readability. Fortran code that is written using this style of specifications and
documentation can be processed by the SYSDOC program described in Appendix A, producing documen-
tation in the format shown in Appendix A. Character strings containing keyword identifiers are used by
SYSDOC to identify the various elements of the specifications and documentation. Table 3 contains an
ordered list of the character strings SYSDOC expects to find by default. When a specification is not needed
for a routine, then the character string identifier should be omitted. The purpose, history, and end specifica-
tions identifiers are always required. An outline for a Fortran subroutine is shown in figure 1. Qutlines for
functions and programs are very similar to the subroutine outline. The remainder of this section contains
brief descriptions and examples for each of the documentation elements.

Table 3. Character strings used to identify key elements
in the documentation

Character string Required
+ + + PURPOSE + + + yes
++ + HISTORY + + + yes
+++ KEYWORDS + + +

+++ DUMMY ARGUMENTS + + +

+ + + ARGUMENT DEFINITIONS + + +

+ + + PARAMETERS + + +

+ + + PARAMETER DEFINITIONS + + +
++ + COMMON BLOCKS + + +

+ + + COMMON DEFINITIONS + + +
+++ SAVES + + +

+ + + SAVE DEFINITIONS + + +

+++ LOCAL VARIABLES + + +

+ + + LOCAL DEFINITIONS + + +

+ + + EQUIVALENCES + + +

+ + + EQUIVALENCE DEFINITIONS + + +
+ + + FUNCTIONS + + +

+ + + INTRINSICS + + +

+ + + EXTERNALS + + +

+ + + DATA INITIALIZATIONS + + +

+ + + INPUT FORMATS + + +

+ + + OUTPUT FORMATS + + +

+ + + STATEMENT FUNCTIONS + + +

+ + + END SPECIFICATIONS + + + yes

14 A Fortran Coding Convention for Use in the U.S. Geological Survey, Water Resources Division

Figure 1. Fortran subroutine outline.

ana

oo NnONn

oo

N oo oo

[eXeNeNoX®]

NnInnr

SUBROUTINE aaaaaa
(aaaaaa, ...

I
M bbbbbb, ...
o

CCCCCC, ...)

+ + + PURPOSE + + +
This space is used to define the purpose and function of this

routine. It should be mixed uppercase and lowercase because it

will be reproduced in the system documentation exactly as it
appears here.

+ + + HISTORY + + +
Name 08/06/95 short description of change.

+ + + KEYWORDS + + +
aaaaaam, bbbbbm. ..

+ + + DUMMY ARGUMENTS + + +
INTEGER

REAL

DOUBLE PRECISION
CHARACTER*n

LOGICAL

+ + + ARGUMENT DEFINITIONS + + +

aaaaaa - definition of first subroutine argument, in mixed
uppercase and lowercase. This definition will be
reproduced in the system documentation exactly as
it is entered here.

cccece - definitions of last subroutine argument

+ + + PARAMETERS + + +
INCLUDE 'Pxxxxx.INC'

+ + + PARAMETER DEFINITIONS + + +
pppppp - parameter definitions

+ + + COMMON BLOCKS + + +
INCLUDE 'Cxxxxx.INC'

I: AAA, BBB,

M: CCC, DDD,

O: EEE, FFF,

+ + + COMMON DEFINITIONS + + +
INCLUDE 'DxxxxxX.INC'

+ + + SAVES + + +
INTEGER

REAL

DOUBLE PRECISION
CHARACTER*n
LOGICAL

SAVE

+ + + SAVE DEFINITIONS + + +
8S8SS1 - saved variable definitions are included here

+ + + LOCAL VARIABLES + + +
INTEGER

REAL

DOUBLE PRECISION
CHARACTER*n

LOGICAL

SPECIFICATIONS, DOCUMENTATION, AND STYLE

15

Figure 1. Fortran subroutine outline--Continued.

+ + + LOCAL DEFINITIONS + + +
AAAAAl - local variable definitions are included here

[eXeNeX?!

+ + + EQUIVALENCES + + +
INTEGER

REAL

DOUBLE PRECISION

CHARACTER*n

LOGICAL

EQUIVALENCE (’)

+ + + EQUIVALENCE DEFINITIONS + + +
AAAAAl - equivalenced variable definitions are included here

Qo

+ + + FUNCTIONS + + +
INTEGER

REAL

DOUBLE PRECISION
CHARACTER*n

LOGICAL

+ + + INTRINSICS + + +
INTRINSIC

N QN

+ + + EXTERNALS + + +
EXTERNAL

nn

+ + + DATA INITIALIZATIONS + + +
DATA AAAAl, AAAA2, AAAA3
$ /1, 2, 3/

+ + + INPUT FORMATS + + +
lnnn FORMAT ()

+ + + OUTPUT FORMATS + + +
2nnn FORMAT ()

+ + + STATEMENT FUNCTIONS + + +
description of statement function
NAME (arguments) = expression

+ + + END SPECIFICATIONS + + +

Code goes here. Should generally be less than
150 statements, exclusive of comment lines.

QN0 o N0 Q0

RETURN
END

16 A Fortran Coding Convention for Use in the U.S. Geological Survey, Water Resources Division

PROGRAMS,
FUNCTIONS,
SUBROUNTINES

ARGUMENTS

PURPOSE

HISTORY

Three comment lines precede PROGRAM, FUNCTION, and SUBROUTINE
statements. They may be blank comment lines or may include a programmer-
defined identification system for subprograms. All function statements are pre-
ceded by a type specification.

C
C Version 1.0
C
PROGRAM SYSDOC
and
C
C
C
SUBROUTINE VUSE
and
C
C 9410.1
C

INTEGER FUNCTION CRINTE

SUBROUTINE dummy arguments are listed as Input, Modify, and Output vari-
ables, each type beginning on a new continuation line, in the stated order with an
I, M, or O, respectively, in column 6. This practice has been extremely helpful in
debugging, program maintenance, and sharing subprograms.

FUNCTION arguments are input only. FUNCTIONS return a single value. For
clarity and standard compliance, FUNCTIONS do not have Modify or Output
arguments, nor common blocks. If a routine needs a Modify or Output argument
or contains a common block, it should be written as a subroutine, not a function.

PROGRAMs have no arguments.
SUBROUTINE VUSE

I (CMNFG, VNAM, UPDCNT, UPDYTP, UPDNAM,
I FCouT,

M BUFF

o NUMUSE, IMOFG)

and

INTEGER FUNCTION CRINTE
I (ERRINT, LEN, STR)

A paragraph in mixed case (for readability) describes the purpose and function

of the routine. This information should be complete, as it will be reproduced in
the system documentation. Any nonstandard features should be described.

+ + + PURPOSE + + +

This routine converts a character string to its integer
equivalent. It returns the value of ERRINT for an
invalid string. The integer is expected to be right
justified in the string. The integer may be negative.

[eXoNoNoNeXe!

This space is used to document the history of the routine. The name of the author
or responsible person or unit is included here, as well as dates and justifications
for modifications, fixes, and other changes.

+ + + HISTORY + + +

KMFlynn 09/30/90 tested and accepted

KMFlynn 02/10/92 change made in code to handle bug
found in compiler for handling quoted
backslash

oo an

SPECIFICATIONS, DOCUMENTATION, AND STYLE 17

KEYWORDS

DUMMY
ARGUMENTS

ARGUMENT
DEFINITIONS

Keywords are helpful in program maintenance and in indexing the subprograms.
Keywords are separated by commas and contained in columns 7 through 72.
Generally, the number of keywords will be fairly small. If there are a lot of
keywords, the routine may be doing too many things and may be difficult to
maintain.

C

C + + + KEYWORDS + + +

C Character conversion, Integer Conversion,
C Numeric conversion

All arguments are explicitly declared by type in the order INTEGER, REAL,
DOUBLE PRECISION, COMPLEX, LOGICAL, and CHARACTER. Any
array dimensions are included in the explicit type declaration. There are no
implicit type declarations or dimension statements.

c + + + DUMMY ARGUMENTS + + +
INTEGER CMNFG, UPDCNT, UPDTYP(UPDCNT), FCOUT, NUMUSE
CHARACTER*1 VNAM(8), BUFF(100), UPDNAM(6,UPDCNT), IMOFG

A definition is included for each dummy argument. The definitions appear in the
same order that the arguments are passed to the routine. Each definition begins
on a new line. The Argument name appears in uppercase on the first line of the
definition beginning in column 7. A hyphen (-) is in column 14. The definition is
in mixed case in columns 16-72, using as many lines as are needed to define the
argument. The definition will be reproduced in the documentation exactly as it
appears in the code.

C

C + + + ARGUMENT DEFINITIONS + + +

C DATE - starting date and time

C (1) vyear (4) hour

C (2) month (5) minute
c (3) day (6) second
C TSTEP - time step, in TUNIT units
C TUNIT - time units

C 1 - second 4 - day

C 2 - minute 5 - month
C 3 - hour 6 - year
C NVAL - number of data values

C VALUE - array containing NVAL data values

18 A Fortran Coding Convention for Use in the U.S. Geological Survey, Water Resources Division

PARAMETERS
and
PARAMETER
DEFINITIONS

COMMON BLOCKS
and

COMMON
DEFINITIONS

PARAMETER statements are used mainly to define the size and limits of arrays
and the unit numbers for input and output. A PARAMETER constant is declared
in an explicit type declaration before it is defined, and it is defined before it is
used. The definition of a PARAMETER constant follows the PARAMETER
statement, using the same form as was used for dummy arguments.

C + + + PARAMETERS + + +
INCLUDE 'PSORT.INC'

Where the file PSORT.INC contains:

INTEGER LENREC, LENARY
PARAMETER (LENREC=120, LENARY=1000)

+ + + PARAMETER DEFINITIONS + + +
LENREC - maximum record length that will be sorted
LENARY - maximum number of records that can be sorted

[oNoKoXp!

Figure 2. PARAMETER INCLUDE file outline.

INTEGER nnnnnn
PARAMETER (nnnnnn=)

+ + + PARAMETER DEFINITIONS + + +
nnnnnn - definition of parameter goes here

N

All COMMON blocks are named. There is no blank COMMON. Character and
numeric data are not mixed in the same COMMON block. Each COMMON
statement is followed by explicit type declarations for each member of that
COMMON. Any arrays in the COMMON are dimensioned in the explicit type
declarations.

SPECIFICATIONS, DOCUMENTATION, AND STYLE 19

20

[oNe]

C
C
C

+ + + COMMON BLOCKS + + +
INCLUDE 'CPLOT.INC'

I: KOUNT, KOLOR, LINE

M: LABX, LABY, TITLE

0O: XAXIS, YAXIS

Where file CPLOT.INC contains:

c

[XeXe!

[eNeNeNeNe oo e NeNoNo Ao e N Ko NeNo No N O O]

$

+ + + PARAMETERS + + +

INTEGER

MAX

PARAMETER (MAX = 100)
+ + + PARAMETER DEFINITION + + +
MAX - maximum number of points

COMMON / PLOTN / KOUNT, KOLOR, LINE

INTEGER
REAL

XVAL, YVAL, XMIN, XMAX, YMIN, YMAX,

KOUNT, KOLOR, LINE
XVAL (MAX), YVAL(MAX), XMIN, XMAX, YMIN, YMAX

COMMON / PLOTC / LABX, LABY, TITLE
CHARACTER*40 LABX, LABY
CHARACTER*60 TITLE(3)

+ + + COMMON DEFIN<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>